Quantitative Proteomics Reveals the Defense Response of Wheat against Puccinia striiformis f. sp. tritici
نویسندگان
چکیده
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is considered one of the most aggressive diseases to wheat production. In this study, we used an iTRAQ-based approach for the quantitative proteomic comparison of the incompatible Pst race CYR23 in infected and non-infected leaves of the wheat cultivar Suwon11. A total of 3,475 unique proteins were identified from three key stages of interaction (12, 24, and 48 h post-inoculation) and control groups. Quantitative analysis showed that 530 proteins were differentially accumulated by Pst infection (fold changes >1.5, p < 0.05). Among these proteins, 10.54% was classified as involved in the immune system process and stimulus response. Intriguingly, bioinformatics analysis revealed that a set of reactive oxygen species metabolism-related proteins, peptidyl-prolyl cis-trans isomerases (PPIases), RNA-binding proteins (RBPs), and chaperonins was involved in the response to Pst infection. Our results were the first to show that PPIases, RBPs, and chaperonins participated in the regulation of the immune response in wheat and even in plants. This study aimed to provide novel routes to reveal wheat gene functionality and better understand the early events in wheat-Pst incompatible interactions.
منابع مشابه
Corrigendum: Quantitative Proteomics Reveals the Defense Response of Wheat against Puccinia striiformis f. sp. tritici
“This work was supported by the Fundamental Research Funds for the Central Universities (XDJK2016A020, XDJK2015C060, SWU114046, 2362015xk04), the Fundamental and Advanced Research Projects of Chongqing City (cstc2016jcyjA0316), the Open Project Program of State Key Laboratory of Crop Stress Biology for Arid Areas (CSBAA2015009), and the Visiting Scholar Funds of Key Laboratory of Plant Protecti...
متن کاملProteomic Analysis of Rice Nonhost Resistance to Puccinia striiformis f. sp. tritici Using Two-Dimensional Electrophoresis
Rice (Oryza sativa L.) is the only widely cultivated gramineous crops that cannot be infected by rust fungi. To decipher the molecular basis of rice nonhost resistance (NHR) to Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust, proteomic analysis was performed using the two-dimensional electrophoresis (2-DE) technique. The expressed proteins from rice leaves 24 an...
متن کاملTaSYP71, a Qc-SNARE, Contributes to Wheat Resistance against Puccinia striiformis f. sp. tritici
N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are involved in plant resistance; however, the role of SYP71 in the regulation of plant-pathogen interactions is not well known. In this study, we characterized a plant-specific SNARE in wheat, TaSYP71, which contains a Qc-SNARE domain. Three homologs are localized on chromosome 1AL, 1BL, and 1DL. Using Agrobacterium-mediat...
متن کاملGenetic analysis and molecular mapping of wheat genes conferring resistance to the wheat stripe rust and barley stripe rust pathogens.
ABSTRACT Stripe rust is one of the most important diseases of wheat and barley worldwide. On wheat it is caused by Puccinia striiformis f. sp. tritici and on barley by P. striiformis f. sp. hordei Most wheat genotypes are resistant to P. striiformis f. sp. hordei and most barley genotypes are resistant to P. striiformis f. sp. tritici. To determine the genetics of resistance in wheat to P. stri...
متن کاملAssessment of Two Different Sources of Durable Resistance and Susceptible Cultivar of Wheat to Stripe Rust (Puccinia striiformis f. sp. tritici)
A study was conducted to assess the durable resistance in a near isogenic line of spring wheat (Triticum aestivalis L.), possessing resistance gene Yr-18 to some isolates (race specific resistance) of stripe rust (Puccinia striiformis f. sp. tritici), namely Thatcher Yr-18 and durable resistance of an cultivar of spring wheat to all isolates of stripe rust (race non- specific resistance), namel...
متن کامل